今天做题的时候做了一道这个题,其中需要算一个数的因子的个数.
Let’s denote d(n) as the number of divisors of a positive integer n. You are given three integers a, b and c. Your task is to calculate the following sum:
Find the sum modulo 1073741824 (2^30).
Input
The first line contains three space-separated integers a, b and c (1 ≤ a, b, c ≤ 100).
Output
Print a single integer — the required sum modulo 1073741824 (230).
Examples
Input
2 2 2
Output
20
Input
5 6 7
Output
1520
Note
For the first example.
d(1·1·1) = d(1) = 1;
d(1·1·2) = d(2) = 2;
d(1·2·1) = d(2) = 2;
d(1·2·2) = d(4) = 3;
d(2·1·1) = d(2) = 2;
d(2·1·2) = d(4) = 3;
d(2·2·1) = d(4) = 3;
d(2·2·2) = d(8) = 4.
So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.
1
2
3
4
5
6
7
8
9
10
11
12
求一个数的因子的个数的方法:先进行质因数分解,然后再求各个因数的(幂+1)相乘
然后由于这道题的数据量比较小,所以直接暴力枚举了,省去了建立质数表的操作。
#include <iostream>
using namespace std;
typedef long long ll;
ll d(int n)//求因子个数--先进行质因数分解,然后再求各个因数的(幂+1)相乘
{
ll ans = 1;
for (int i = 2; i * i <= n; ++i)
{
if (n % i == 0)
{
ll counter=0;
while(n%i==0)
{
n/=i;
counter++;
}
ans = ans*(counter+1);
}
}
if(n>1) ans*=2;//质数的因子有两个
return ans;
}
int main()
{
ll a, b, c;
cin >> a >> b >> c;
ll ans = 0;
for (int i = 1; i <= a; ++i)
{
for (int j = 1; j <= b; ++j)
for (int k = 1; k <= c; ++k)
{
ans += d(i * j * k);
//cout << ans << endl;
}
}
cout << ans%1073741824 << endl;
//system("pause");
}
欢迎关注我的公众号“灯珑”,让我们一起了解更多的事物~